Popeye Was Right: There’s Energy in That Spinach

September 21, 2016
Kevin Hattori

Interdisciplinary discovery at Technion: a cell that uses sunlight to produce electricity and hydrogen from spinach leaf extract

spinach-leaves-1461774375ktuUsing a simple membrane extract from spinach leaves, researchers from the Technion-Israel Institute of Technology have developed a bio-photo-electro-chemical (BPEC) cell that produces electricity and hydrogen from water using sunlight. The raw material of the device is water, and its products are electric current, hydrogen and oxygen. The findings were published in the August 23 online issue of Nature Communications.

The unique combination of a man-made BPEC cell and plant membranes, which absorb sunlight and convert it into a flow of electrons highly efficiently, paves the way for the development of new technologies for the creation of clean fuels from renewable sources: water and solar energy.

The BPEC cell developed by the researchers is based on the naturally occurring process of photosynthesis in plants, in which light drives electrons that produce storable chemical energetic molecules, that are the fuels of all cells in the animal and plant worlds.

graduate students Dan Kallman (left) and Gadiel Saper. (credit: Yossi Shrem, Technion Spokesperson’s Office)

Graduate students Dan Kallman (left) and Gadiel Saper. (credit: Yossi Shrem, Technion Spokesperson’s Office)

In order to utilize photosynthesis for producing electric current, the researchers added an iron-based compound to the solution. This compound mediates the transfer of electrons from the biological membranes to the electrical circuit, enabling the creation of an electric current in the cell.

The electrical current can also be channeled to form hydrogen gas through the addition of electric power from a small photovoltaic cell that absorbs the excess light. This makes possible the conversion of solar energy into chemical energy that is stored as hydrogen gas formed inside the BPEC cell. This energy can be converted when necessary into heat and electricity by burning the hydrogen, in the same way hydrocarbon fuels are used.

However, unlike the combustion of hydrocarbon fuels – which emit greenhouse gases (carbon dioxide) into the atmosphere and pollute the environment – the product of hydrogen combustion is clean water. Therefore, this is a closed cycle that begins with water and ends with water, allowing the conversion and storage of solar energy in hydrogen gas, which could be a clean and sustainable substitute for hydrocarbon fuel.

The study was conducted by doctoral students Roy I. Pinhassi, Dan Kallmann and Gadiel Saper, under the guidance of Prof. Noam Adir of the Schulich Faculty of Chemistry, Prof. Gadi Schuster of the Faculty of Biology and Prof. Avner Rothschild of the Faculty of Material Science and Engineering.

“The study is unique in that it combines leading experts from three different faculties, namely three disciplines: biology, chemistry and materials engineering,” said Prof. Rothschild. “The combination of natural (leaves) and artificial (photovoltaic cell and electronic components), and the need to make these components communicate with each other, are complex engineering challenges that required us to join forces.”

The study was conducted at the Nancy and Stephen Grand Technion Energy Program (GTEP) and carried out at the Technion’s Hydrogen Lab, which was established under the auspices of the Adelis Foundation and GTEP. It was funded by the I-CORE (Israeli Centers of Research Excellence) program of the Council for Higher Education’s Planning and Budgeting Committee, the National Science Foundation (Grant No. 152/11), a special grant from the United States – Israel Binational Science Foundation (BSF), and the German-Israeli Project Cooperation Program (DIP).


The Technion-Israel Institute of Technology
is a major source of the innovation and brainpower that drives the Israeli economy, and a key to Israel’s renown as the world’s “Start-Up Nation.” Its three Nobel Prize winners exemplify academic excellence. Technion people, ideas and inventions make immeasurable contributions to the world including life-saving medicine, sustainable energy, computer science, water conservation and nanotechnology. The Joan and Irwin Jacobs Technion-Cornell Institute is a vital component of Cornell Tech, and a model for graduate applied science education that is expected to transform New York City’s economy.

American Technion Society (ATS) donors provide critical support for the Technion—more than $2 billion since its inception in 1940. Based in New York City, the ATS and its network of supporters across the U.S. provide funds for scholarships, fellowships, faculty recruitment and chairs, research, buildings, laboratories, classrooms and dormitories, and more.