Researchers Discover New Light-Sensing Protein

June 25, 2018
Kevin Hattori

Research conducted at the Technion has, for the first time since 1971, uncovered a new light sensing protein family. Published last week in Nature, the research was conducted by PhD student Alina Pushkarev under the supervision of Professor Oded Beja, and included collaboration with Japanese, American and Israeli researchers.

Professor Oded Beja

Light reactive proteins allow living organisms to harvest the energy of the sun. These proteins are responsible for light harvesting by two distinct biological processes. The first of these processes is photosynthesis, which is utilized by plants, algae and aquatic bacteria (cyanobacteria). The second is via retinal bound proteins (rhodopsins), which are utilized by many microorganisms, as well as animal visual organs (including human eyes). Rhodopsins are embedded in the membrane of the cell, by crossing it seven times (i.e. they are a long protein “stitching” the cells’ outer wall seven times). Rhodopsins are comprised of a protein attached to a vitamin A derivative, called retinal, allowing them to capture light.

Currently there are two known rhodopsin types. Microorganisms use Type 1 rhodopsins to sense light and convert it to chemical energy, while Type 2 rhodopsins are found in animal eyes, and crucial for vision.

In the Technion marine microbiology lab, researchers aimed to discover completely new rhodopsins in the microorganisms residing in Lake Kinneret at the peak of summer – when the environment would be well sunlit. Lake Kinneret, like any natural environment, has an abundant variety of microorganisms that cannot be grown in a laboratory. So, Mrs. Pushkarev and Prof. Beja used a laboratory strain of E. coli as a protein factory for expression of the proteins belonging to the microbial residents of Lake Kinneret.

Alina Pushkarev

By adding retinal (a form of vitamin A that is the chemical basis for animal vision) to the growth media, the researcher found a gene that turned E. coli to a deep purple color. The gene turned out to be a completely new family of rhodopsins, which are embedded in a completely opposite orientation compared to all other known rhodopsins. Though this rhodopsin family was found to exist in almost all known marine and freshwater environments, it had never before been discovered, despite extensive research of these environments. The researchers named the new family heliorhodopsins (hḗlios, ‘sun’).

The first rhodopsins (Type 2) were discovered in 1876 by the German scientist Franz Christian Boll, who isolated them from frogs. In 1971, almost a 100 years later, researchers from the University of California discovered a new family of rhodopsins (Type 1), in a microbe from hypersaline waters. Their motivation was to explain the purple nature of the Haloarchaea (a salt dwelling archaea) living in these waters.

Three decades later, this seemingly non-medical oriented discovery would lead to the development of a new field in neuroscience: Optogenetics. This field is based on the use of Type 1 rhodopsins, for the controlled excitation of neurons, and even single neurons in mammals.

A laboratory strain of E.coli serves as a protein making factory for rhodopsins. Left column – microbes making the heliorhodopsin protein, next to previously known rhodopsins. (Photography: Alina Pushkarev)

Today, many research groups in this field are working on the utilization of Type 1 rhodopsins in treating neuronal disease, correcting cardiac rhythm and more. Now, Mrs. Pushkarev and Prof. Beja’s discovery of a new family of rhodopsins could become the newest tool in the field of optogenetics.

For more than a century, the Technion-Israel Institute of Technology has pioneered in science and technology education and delivered world-changing impact. Proudly a global university, the Technion has long leveraged boundary-crossing collaborations to advance breakthrough research and technologies. Now with a presence on three continents, the Technion will prepare the next generation of global innovators. Technion people, ideas and inventions make immeasurable contributions to the world, innovating in fields from cancer research and sustainable energy to quantum computing and computer science to do good around the world.

The American Technion Society supports visionary education and world-changing impact through the Technion-Israel Institute of Technology. Based in New York City, we represent thousands of US donors, alumni and stakeholders who invest in the Technion’s growth and innovation to advance critical research and technologies that serve the State of Israel and the global good. Over more than 75 years, our nationwide supporter network has funded new Technion scholarships, research, labs and facilities that have helped deliver world-changing contributions and extend Technion education to campuses on three continents.