Quantum Light Gets a Major Glow-Up

Published by www.scientificamerican.com on March 16, 2023.

One of the things that sets the quantum world apart from our everyday classical one is the capacity for entanglement—when two or more objects share an invisible connection that entwines their fates. Entanglement is the most extreme version of a quantum connection, where measuring one particle can tell you everything you need to know about another. Short of that, particles can still sync up in decidedly quantum ways, where measuring one particle will give you some incomplete information about another. Such quantum correlations can be used to make more precise measurements than classical ones. For example, they can help us detect gravitational waves.

Photons of light don’t often naturally connect in this way. But when they do, quantum-correlated photons could potentially be useful to study materials’ quantum features. Generating this quantum light is tricky business, however, and has so far been largely confined to just a few photons.

Electrons, atoms and molecules, on the other hand, participate in en masse quantum correlations inside of materials all the time. Electrons syncing up inside a metal give rise to superconductivity at low temperatures, for instance, and—physicists speculate—high-temperature superconductivity, exotic fractional electron materials, and more. Now a team of physicists in Israel, Austria, England and the U.S. has found a way to imprint the complex pattern of quantum correlations from such materials onto light. This method can produce bright quantum light at a broad range of frequencies, the team explained recently in Nature Physics.

“Imagine having quantum light that you could see with your eyes,” says Ido Kaminer, an electrical and computer engineer at Technion–Israel Institute of Technology and senior author of the study. “That would be amazing, and it would also have many advantages for applications of quantum science that you wouldn’t consider otherwise.”

Keep reading at scientificamerican.com.

More High-Tech Future stories